Hooke’s Law


Hooke’s Law:

It states that when the material is loaded within the elastic limit, the stress is directly proportional to the strain .i.e, the ratio of stress to the corresponding strain is a constant within the elastic limit and the constant is known as Young’s Modulus or Modulus of Elasticity.
Therefore
                                                                Stress α strain
                                                                Stress = E (strain)
                                                                E= stress/strain
                                                                E=σ/e

Where E= Young’s Modulus  σ = stress of the material , e = strain in the material

PROBLEMS ON STRESS, STRAIN AND YOUNG’S MODULUS
  
1)    An elastic rod of 25mm in diameter ,200mm long extends by 0.25mm under a tensile load of 40 KN. Find the intensity of stress, strain and elastic modulus of the material.

Step1: Data
Length of the rod=200mm
Diameter of the rod=25mm
Extension =0.25mm
Load=40KN=40x103N

Step 2: Calculation of area of the material
A= πd2/4
   = π (25)2/4
   = 490.87mm2

Step 3: Calculation of intensity of stress
σ = load applied/ area of material
   = 40x103/490.87
   = 81.48N/mm2

Step 4: Calculation of strain
e = extension of rod /original length
   = 0.25/200
   = 1.25x10-3


2)  A cast iron column has the external diameter of 300mm and 20mm thick. Find the safe compressive load on the column with factor of safety of 5, if the crushing strength of the material is 550N/mm2.

Step1: Data
External diameter = 300mm
Thickness = 20mm
FOS = 5
Crushing strength = 550N/mm2

Step2: Calculation of internal diameter
Internal diameter = External diameter + 2(thickness)
                                300+2(20)
                                340 mm

Step3: Calculation of area of the material
A= π (D-d) 2/4
   = π (340-300)2/4
  = 1256.64 mm2

Step 4: Calculation of safe stress
FOS = Ultimate stress/safe stress
 5       = 550/ safe stress
Safe stress = 550/ 5
Safe stress = 110 N/mm2 

Step 5: Calculation of Safe Load
Safe stress = Safe load /Area of cross section
110            = Safe load/1256.64
Safe load   = 138.230KN
    
3)  A 30 mm diameter steel rod when subjected to an axial force was subjected to a strain of 0.6x10-3. Find the tensile force caused by the above strain. Take E=200KN/mm2

Step1: Data
Diameter =30 mm
Strain      = 0.6x10-3
Young’s modulus E=200KN/mm= 2X105 N/mm2

Step2: Calculation of area of the material
A= πd2/4
   = π (30)2/4
   = 706.86 mm2

Step 3: Calculation of intensity of stress
E= σ/e
2X105= σ/0.6x10-3
σ = 120 N/mm2

Step 4: Calculation of Load
Stress = Load /Area of cross section
120    = Load/706.86

Load = 84.82KN



4) Find the maximum and minimum stresses produced in thestepped bar as shown in the fig  due to an axially applied compressive load of 12KN.
Step1: Data
Compressive load=12 X 103N.
Minimum diameter = 12mm
Maximum diameter = 25mm

Step2: Calculation of area of the material
Minimum area= A= πd2/4
                              = π (12)2/4
                              = 113.09mm2

Maximum area =A = πd2/4
                               = π (25)2/4
                               = 490.87mm2

Step 3: Calculation of intensity of stress
Maximum stress: = Load / Minimum Area of cross section
                             = 12X1000/113.09
                             =106.11 N/mm2
Minimum stress: = Load / Maximum Area of cross section
                             = 12X1000/490.87
                          =24.45 N/mm2



Step1: Data
Diameter =3 mm
Load=495 N
Extension=0.07mm
Gauge length=100mm

Step2: Calculation of area of the material
A= πd2/4
   = π (3)2/4
   = 7.068mm2

Step 3: Calculation of intensity of stress
Stress = Load /Area of cross section
           = 495/7.068
Stress = 70.03 N/mm2

Step 4: Calculation of strain
Strain = Extension/gauge length
           = 0.07/100
           = 0.7X10-3

Step5: Calculation of Young’s modulus
    E = σ/e
       = 70.03/0.7X10-3
       = 1.00X104 N/mm2

6) A wooden tie is 75mm wide,150mm deep and 1.5m long.It is subjected to a axial pull of 45000N.The stretch of the member is found to be 0.6380 mm. Find the Young’s modulus for the material.

Step1: Data
Width (b) =75mm
Depth (d) =150mm
Length(L) =1.50m=1.5X1000
Load    = 45000N
Stretch = 0.6380mm
E =?

Step2: Calculation of area of the material
A= bXd
   =75X150
   =11.25X103 mm2

Step 3: Calculation of intensity of stress
Stress = Load /Area of cross section
           = 45000/11.25X103
Stress = 4 N/mm2

Step 4: Calculation of strain
Strain = Stretch / length
            = 0.6380/100
= 0.7X10-3

 Step5: Calculation of Young’s modulus
E = σ/e
    = 4/0.7X10-3

    = 5.71X103N/mm2

7)    A load of 4000N has to be raised at the end of the steel wire. If the unit stress in the wire must not exceed 80N/mm2 what is the minimum diameter required? What will be the extension of 3.5 m length of wire? Take E=2x105N/mm2

Step1: Data:
Length(L) =3.50m=3.5X1000mm
Load    = 4000N
Stress   = 80N/mm2
 E=2x105N/mm2
Minimum diameter=??
Extension=??

Step2: Calculation of area of the material
Stress = Load /Area of cross section
80 = 4000/Area of cross section
Area of cross section = 50mm2

Step3: Calculation of Minimum diameter of material
A= πd2/4
50 = π(d)2/4
 d =   7.978mm

Step 4: Calculation of strain
E = σ/e
2x105 = 80/e
  = 0.4X10-3

Step5: Calculation of Extension of material
Strain = Extension/gauge length
 0.4X10-3 = Extension/3.5X1000
Extension= 1.4mm

8) A wooden tie is 60 mm wide ,120 mm deep and 1.5 m long.It is subjected to a axial pull of 30KN. The stretch of the member is found to be 0.625 mm. Find the Young’s modulus of the tie material.

Step1: Data
Width (b) =60 mm
Depth (d) =120 mm
Length(L) =1.50m=1.5X1000
Load    = 30000N
Stretch = 0.6250 mm
E =? 

Step2: Calculation of area of the material
A= bXd
   =60X120
  =7.2X103 mm2

Step 3: Calculation of intensity of stress
Stress = Load /Area of cross section
           = 30000/7.2X103

Stress = 4.166 N/mm2

Step 4: Calculation of strain
Strain = Stretch / length
          = 0.625/1.5X1000
         = 0.416X10-3

Step5: Calculation of Young’s modulus
E = σ/e
   = 4.166/0.416X10-3
   = 1.00X10N/mm2

9) A 20mm diameter brass rod was subjected to the tensile load of 40KN. The extension of the rod was found to be 254 divisions in the 200mm extensometer. If each division is equal to 0.001mm, find the elastic modulus of the brass.

Step 1: Data
Diameter =20 mm
Tensile load = 40KN=40X1000
Gauge length =200 mm
No of divisions = 254
least count = 0.001mm
Extension = 254X0.001 = 0.254 mm

Step2: Calculation of area of the material
A= πd2/4
   = π (20)2/4
   = 314.16 mm2

Step 3: Calculation of intensity of stress
Stress = Load /Area of cross section
           = 40000/314.16
Stress = 127.32 N/mm2

Step 4: Calculation of strain
Strain = Stretch / length
            = 0.254/200
            = 1.27X10-3

Step5:Calculation of Young’s modulus
E = σ/e
   = 127.32/ 1.27X10-3
   = 1.00X10N/mm2

10) A hollow steel column has an external diameter of 250mm and an internal diameter of 200mm. Find the safe axial compressive load for the column if the safe compressive stress is 120N/mm2.

Step 1: Data
External diameter = 250mm
Internal diameter = 200mm. 
Safe Compressive stress = 120N/mm2 

Step2: Calculation of area of the material
A= π(D-d)2/4
= π (250-200)2/4
= 1963.49 mm2

Step 3:Calculation of intensity of stress
Safe Stress = Safe Load /Area of cross section
120           = Safe Load/1963.49
Safe Load = 235.61 KN

11) A hollow steel column of external diameter 250mm has to support an axial load of 2000KN.If the ultimate stress for the steel column is 480N/mm2.Find the internal diameter of the column allowing the factor of safety of 4.

Step 1: Data
External diameter = 250mm
Ultimate stress = 480N/mm2
Axial load = 2000KN
Factor of safety = 4.
Internal diameter = ? 

Step 2: Calculation of working Stress
FOS=Ultimate stress /working stress
4 = 480/working stress
working stress= 120N/mm2.

Step 3: Calculation of area of the material
Stress = Load /Area of cross section
 120    = 2000X1000/Area of cross section
Area of cross section = 16.66X103mm2

Step 4 : Calculation of internal diameter of  material
A= π(D-d)2/4
16.66X103= π (250-d)2/4

d= 104.35 mm
12) A solid alloy bar of 40mm in diameter is used as a tie. If the permissible tensile stress in the material is 320N/m2, determine the capacity of the bar. If the hollow steel bar with internal diameter of 20mm is used instead of solid alloy bar determine its external diameter. For steel hollow bar the permissible stress is 150N/mm2.


Step 1: case 1: solid bar
Diameter = 40mm
stress = 320N/mm2

Step 2: Calculation of area of material
A= πd2/4
   = π (40)2/4
   =1256.63mm2

Step 3: Calculation of intensity of load
Stress = Load /Area of cross section
 320    =Load/1256.63
Load = 402.12KN

Step 4: Case 2: Hallow bar
internal diameter: 20mm
stress = 150N/mm2

Step 5: Calculation of area of material
Stress = Load /Area of cross section
150= 402.12X1000/Area of cross section
Area of cross section=2680.8mm2
A= π(D-d)2/4
2680.8= π (D-20)2/4
D         = 38.42mm
  13)    Fig shows a steel wire and a copper wire of each of length 1m and carrying an axial load of 5KN.
a)      For the same diameter of the wires find the ratio of extension of the copper wire to the extension of the steel wire.

b)      For the same extension of the wires ,find the ratio of the diameter of the copper wire to the diameter of the steel wire .TakeEs=2x105N/mm2 and Ec=1.2x105N/mm2



Step 1: For the same diameter of the wires
we know that E = σ/e
Given Es=2x105N/mm2 and E c=1.2x105N/mm2
      Therefore, Es/E c= (Extension of steel)/ (Extension of copper)
(Extension of steel)/ (Extension of copper) = (2x105) /(1.2x105)
                                                                                                        = 1.67

Step 2 : For the same extension of the wires 

Es/E c=Ac/As
Es/E c=(dc/ds)2
dc/ds = 1.29
ds/dc=0.774

     14)      The following data refer to a mild steel specimen tested in laboratory:
a)      Diameter of the specimen=25mm
b)      Length of the specimen=300mm
c)      Extension under a load of 15KN=0.045mm
d)     Load at yield point=127.65KN
e)      Maximum load=208.6KN
f)       Length of the specimen after failure= 375mm
g)      Neck diameter=17.75mm

Determine young’s modulus, yield point, ultimate stress, percentage elongation, percentage reduction in area, safe stress with FOS of 2.
step 1: Calculation of area of material
A= πd2/4
   = π (25)2/4
   =490.87mm2

Step 2: Calculation of intensity of stress
Stress = Load /Area of cross section
           =15X1000/490.87

Stress = 30.55N/mm2

Step 3: Calculation of strain
Strain = Stretch / length

            = 0.045/300
            = 0.15X10-3
Step4: Calculation of Young’s modulus

E = σ/e
     = 30.55/0.15X10-3
     = 2.03X10N/mm2

Step5: Yield point stress
Stress = Load /Area of cross section
           =127.65X1000/490.87
Stress = 260.04N/mm2

Step6: Ultimate stress
Stress = Load /Area of cross section
           =208.6X1000/490.87
Stress = 424.96N/mm2

Step 7: percentage elongation
percentage elongation = {(length at failure-initial length)/length at failure)}X100
                                     = {(375-200)/375}X 100
                                     = 46.67%

Step 8: percentage reduction in area
final area=A= πd2/4
                      = π (17.75)2/4
                      =247.44mm2
percentage reduction in area= {(initial area-final area)/initial area} X100
                                              = {490.87-247.44)/490.87}X100
                                              = 49.59%
14) A bar of diameter 20 mm and length 100 mm extends by 0.2 mm. If E of the material is 2x105N/mm2, what amount of load applied to the rod. If an extension of 20% greater is required for the same load applied above, how much the diameter of the bar need to be reduced.
 Step 1: Data:
      case 1: Diameter = 20 mm
                Length = 100 mm
                Extension = 0.2 mm  
                E= 2x105N/mm2
                      Load =??
             
    Step 2: Calculation of area of material:
A= πd2/4
   = π (20)2/4
   = 314.16 mm2

     Step 3: Calculation of strain
Strain = Extension / length

            = 0.2/100
            = 2X10-3

Step4: Calculation of intensity of stress
E = σ/e
2x105 = σ / 2X10-3
σ =400N/mm2

Step5: Calculation of intensity of load
Stress = Load /Area of cross section
400   =Load/314.16
Load = 125.66KN

Step6: Case 2
Extension is 20% more: 
Total extension =1.2X0.2 = 0.24mm
Load = 125.66KN
Diameter = d =??
Length =  100 mm

      Step 7: Calculation of strain
Strain = Extension / length
         = 0.24/100
 Strain = 2.4X10-3
Step8: Calculation of intensity of stress
        E = σ/e
2x10= σ / 2.4X10-3
σ = 480N/mm2
Step9: Calculation of diameter
Stress = Load /Area of cross section
480    =125.66X1000/A
          A       =261.79 mm2
       261.79 = πd2/4
            = π(d)2/4
     d     = 18.25 mm
Step 10 : percentage reduction in diameter
(initial diameter-final diameter)/initial diameterX100
{(20-18.25)/20} X 100
= 8.75%


    15)      A short piece of steel pipe is to carry a compressive load of 1000KN with a factor of safety of 2 against yielding. If the thickness of the pipe is to 1/5th of the outside diameter, Find the minimum required outside diameter Take yield stress of the steel as 280MPa.
     
Step 1: Data:
Load = 1000KN
Factor of safety = 2 
Outside diameter = D
Thickness = 1/5th D
 yield stress = 280MPa = 280N/mm2

Step 2 : Calculation of Working stress
FOS= yield stress /working stress
2 = 280/working stress
Working stress= 140N/mm2.

Step 3: Calculation of internal diameter
       d = D-2t
       d = D-2(1/5) D
       d = 0.4D
    Step4: Calculation of intensity of stress
       Stress = Load /Area of cross section
        140    =1000X1000/A
          A       =7142.85 mm2
        
     Step 5: Calculation of diameters
 A= π(D-d)2/4
7142.85= π (D-0.4D)2/4
D         = 119.2 mm
d          = 71.52 mm

 16)  A hollow steel tube is used to carry a compressive load of 150KN. The yield stress for steel is 250N/mm2 and factor of safety is 2 determine the thickness of the steel specimen if the external diameter is 100mm.

    Step 1: Data:
     Load = 150KN
     yield stress = 250N/mm2
      factor of safety = 2
     external diameter = 100 mm.
      
      Step 2: Calculation of Working stress
FOS= yield stress /working stress
2 = 250/working stress
      Working stress= 125 N/mm2.  
        
      Step3: Calculation of intensity of stress
       Stress = Load /Area of cross section
        125    =150X1000/A
             A       =1200 mm2
       
        Step 5: Calculation of diameters
 A= π(D-d)2/4
1200= π (100-d)2/4
d      = 60.91 mm

Step 6 : Calculation of thickness
t = {(D-d)}/2
t = {(100- 60.91)}/2
t = 19.54 mm

     17)      The tensile test was conducted on a mild steel bar. The following details are
a)      Diameter of the steel bar=16mm
b)      Load at proportionality limit= 72KN
c)      Load at failure=80KN
d)     Diameter of the rod at failure=12mm
e)      Gauge length of the bar =80mm
f)       Extension at the load of 60KN=0.115mm
g)      Final length of the bar=104mm

Determine young’s modulus, proportionality limit stress, true breaking stress, percentage elongation of the material.

step 1: Calculation of area of material
A= πd2/4
   = π (16)2/4
   =201.06 mm2

Step 2: Calculation of intensity of stress
Stress = Load /Area of cross section
           =60 X1000/201.06

Stress = 298.41N/mm2

Step 3: Calculation of strain
Strain = Stretch / length
          = 0.115/80
           = 1.43X10-3
Step4: Calculation of Young’s modulus
E = σ/e
     = 298.41/1.43X10-3
     = 2.07X10N/mm2

Step5: proportionality limit stress
Stress = Load /Area of cross section
           =72X1000/201.06


Stress = 358.10N/mm2

Step6: True breaking stress
Stress = Load /Area of cross section
           =80X1000/201.06
Stress = 397.89N/mm2
Step 7: percentage elongation
percentage elongation = {(length at failure-initial length)/length at failure)}X100
                                     = {(104-80)/104}X 100
                                     =23.07%

Step 8: percentage reduction in area
final area=A= πd2/4
                        = π (12)2/4
                        =113.09mm2
percentage reduction in area= {(initial area-final area)/initial area} X100
                                              = {201.06-113.09)/201.06}X100
                                               = 43.75%

Post a Comment

0 Comments