NUMERICAL TO DETERMINE NORMAL THRUST AND RADIAL SHEAR FOR A THREE HINGED PARABOLIC ARCH



NUMERICAL TO DETERMINE NORMAL THRUST AND RADIAL SHEAR FOR A THREE HINGED PARABOLIC ARCH 

A three hinged parabolic arch of span 20m and rise 5m carries a uniformly distributed 
load of 20KN/m for entire left half of the span and a point load of 120KN at 5m from 
right support .Determine normal thrust and radial shear for the arch at section 4m from left span.



Step 1:

Applying vertical equilibrium condition for the arch

+ V = 20(10) +120 = 320KN….. (1)

Taking moment about support A

(20) –120 (15) -20(10) (5) = 0….. (2)

Solving Eq 2

b= 140KN

Substitute the value of V b in Eq 1

a= 180KN

Taking moment about Crown C

(10) -20(10) (5)-H (5) = 0

180 (10) -20(10) (5)-H (5) = 0…….. (3)

Solving the above equation

H = 160KN

Step 2:

Determining the moment about the section 4m from left support

d = V (4) – 20(4) (2) – H (y d) ……… (4)

Determining the value of vertical distance y

W k t

y = 4hx (L-x)/L2 ………. (5)

y d = 4(5)(4) (20-4)/202  

y d = 3.2m

Substituting the value of y d in Eq (4)

d = 140 (4) – 20(4) (2) – 160 (3.2)

d = 48KN-m

Step 3:
Determining the normal thrust and radial shear

Differentiate the Eq (5) wrt x

dy/dx =tan Ꝋ= 4h (L-2x)/L2                                                                  

tan Ꝋ = 4(5) (20-2(4))/202                                                                                                             

tan Ꝋ = 3/5                                                         

Sin Ꝋ = 3/√ {(3)2 + (5)2} = 3/√ 34

Cos Ꝋ = 5/ √ 34

Normal thrust at D = Pn = Hd Cos Ꝋ +Vd Sin Ꝋ

Where,

H= Total horizontal force at section D

V= Total vertical force at section D

V= V – 20(4)

V= 180 – 80

V= 100KN

H= 160KN

Pn = Hd (5/ √ 34) +Vd Sin Ꝋ

P= 160(5/ √ 34) + 100 (3/ √ 34)

P= 188.65KN

Radial Shear at D = Sd = Hd Sin Ꝋ -Vd Cos Ꝋ
          
                                S= 160(3/ √ 34)- 100((5/ √ 34)

                     S= -3.43KN

Post a Comment

0 Comments