NUMERICAL TO DETERMINE NORMAL THRUST AND RADIAL SHEAR FOR A THREE HINGED PARABOLIC ARCH
A three hinged parabolic arch of span 20m and rise 5m carries a uniformly distributed
load of 20KN/m for entire left half of the span and a point load of 120KN at 5m from
right support .Determine normal thrust and radial shear for the arch at section 4m from left span.
Step 1:
Applying vertical equilibrium condition for the arch
V a + V b = 20(10) +120 = 320KN….. (1)
Taking moment about support A
V b (20) –120 (15) -20(10) (5) = 0….. (2)
Solving Eq 2
V b= 140KN
Substitute the value of V b in Eq 1
V a= 180KN
Taking moment about Crown C
V a (10) -20(10) (5)-H (5) = 0
180 (10) -20(10) (5)-H (5) = 0…….. (3)
Solving the above equation
H = 160KN
Step 2:
Determining the moment about the section 4m from left support
M d = V a (4) – 20(4) (2) – H (y d) ……… (4)
Determining the value of vertical distance y
W k t
y = 4hx (L-x)/L2 ………. (5)
y d = 4(5)(4) (20-4)/202
y d = 3.2m
Substituting the value of y d in Eq (4)
M d = 140 (4) – 20(4) (2) – 160 (3.2)
M d = 48KN-m
Step 3:
Determining the normal thrust and radial shear
Differentiate the Eq (5) wrt x
dy/dx =tan Ꝋ= 4h (L-2x)/L2
tan Ꝋ = 4(5) (20-2(4))/202
tan Ꝋ = 3/5
Sin Ꝋ = 3/√ {(3)2 + (5)2} = 3/√ 34
Cos Ꝋ = 5/ √ 34
Normal thrust at D = Pn = Hd Cos Ꝋ +Vd Sin Ꝋ
Where,
Hd = Total horizontal force at section D
Vd = Total vertical force at section D
Vd = V a – 20(4)
Vd = 180 – 80
Vd = 100KN
Hd = 160KN
Pn = Hd (5/ √ 34) +Vd Sin Ꝋ
Pn = 160(5/ √ 34) + 100 (3/ √ 34)
Pn = 188.65KN
Radial Shear at D = Sd = Hd Sin Ꝋ -Vd Cos Ꝋ
Sd = 160(3/ √ 34)- 100((5/ √ 34)
Sd = -3.43KN
0 Comments