Numerical problem on the truss Analysis by method of joints

Analyse the given truss given below by using the method of joints


Step 1: Converting the supports into reactions as shown in figure below
Step 2: Check for Determinacy
                           w.k.t.

                          m+r-2j=0
                           
                           
                           9+3-2(6) =0
                         
                           Therefore, the structure is determinate.
                           
                            Where, 

                            m = The number of members in the structure
           
                            r =   Support Reactions
             
                            j =   Number of joints


Step 3: Calculation of support reactions
               
               Number of unknown reactions = 3 (.i.e. HA, VA & VD)

               Applying the equilibrium conditions

               Î£H = 0

                HA + 80 = 0 ……….. (1)

                Therefore, HA = -80 KN

                ΣV = 0

                VA + V= 50KN.............. (2)

               Taking moment about support D

               VA (3) – 50 (1) + 80 (0.75) = 0............. (3)

               Solving the above equation

               VA = - 3.33KN

               Substitute VA in Eq (2)

               Therefore, VD = 53.33 KN

 Step 4: Free body diagram representing the nature of forces



Step 5: Solving joint A


Applying horizontal equilibrium condition

ΣH = 0

-80 + FAE + FAB CosÏ´ = 0

(Ï´ = Tan-1(0.75/1))

(Ï´ = 36.86o)

FAE + FAB Cos36.86 = 80……… (1)

ΣV = 0

-3.33 + FAB SinÏ´ = 0

FAB Sin36.86 = 3.33

Therefore, FAB = 5.55 KN (Tensile)…… (2)

Substitute (2) in (1)

FAE = 75.56KN(Tensile)

Step 6: Solving joint B

Applying horizontal equilibrium condition

ΣH = 0

FBC - FAB Sinα = 0

FBC â€“ 5.55Sin 53.13 = 0

FBC = 4.44 KN

ΣV = 0

-FBE â€“ FAB Cosα = 0

-FBE â€“ 5.55Cos 53.13 = 0

 FBE = -3.33KN

FBE = 3.33KN (Compression)

Step 7: Solving for joint E

ΣH = 0

- FAE + FEF + FEC CosÏ´ = 0…… (1)

ΣV = 0

-FBE + FEC SinÏ´ = 0

-3.33 + FEC Sin 36.86 = 0

FEC = 5.55KN (Tensile) ………. (2)

Substitute (2) in (1)

- FAE + FEF + FEC CosÏ´ = 0

-75.56+ FEF +5.55Cos 36.86 = 0

Therefore, FEF = 71.12KN(Tensile)

Step 8: Solving for joint F


          ΣH = 0
          
          FEF = FFD
        
          FFD = 71.12KN (Tensile)
          
          ΣV = 0
          
          FFC = 50KN (Tensile)

Step 9: Solving for joint C


          ΣH = 0

         -FBCSinα +80 + FDC Sinα = 0

         -4.44Sin53.14 + 80 + FDC Sin53.14 = 0

          FDC = - 95.55KN

          FDC = 95.55KN (Compression)

                   Numerical problem on the truss Analysis by method of Sections

                      Determine the forces in the members BD , CD & CE

Step 1: Sectioning of a truss


Step 2: Check for Determinacy
          w.k.t.

    m+r-2j=0

. i.e., 7+3-2(5) =0
                                
Therefore, the structure is determinate.

Where, 

m = The number of members in the structure
           
 r =   Support Reactions
             
j =   Number of joints

Step 3: Determination of support reactions

Applying the equilibrium conditions

ΣH = 0

Therefore, HE = 0……… (1)

ΣV = 0

VA + VE = 8000 N…….. (2)

Taking moments about E

VA (2) + 4000 (1) – 1000 (1.5) – 3000(0.5) = 0

Therefore, VA = 3500N

Substitute (2) in (1)

V= 4500N

Step 4: Determination of unknown forces


Taking moment about C

-VE (1) + 3000(0.5) – FDB (0.866) = 0

Solving the above equation,

FDB = -3464 N

FDB = 3464 N (Compressive)

Applying vertical equilibrium condition

ΣV = 0

-3000 - FDCSin60 + V= 0

Therefore, FDC = 1732.05N (Tensile)

Taking Moments about D

-V(0.5) +FCE (0.866) = 0

FCE = 2598N