CONCRETE


Concrete is a construction material composed of cement (commonly Portland cement) as well as other cementitious materials such as fly ash and slag cement, aggregate (generally a coarse aggregate such as gravel limestone or granite, plus a fine aggregate such as sand), water, and chemical admixtures. The word concrete comes from the Latin word "concretus", which means "hardened" or "hard".


Concrete solidifies and hardens after mixing with water and placement due to a chemical process known as hydration. The water reacts with the cement, which bonds the other components together, eventually creating a stone-like material. Concrete is used to make pavements, architectural structures, foundations, motorways/roads, bridges/overpasses, parking structures, brick/block walls and footings for gates, fences and poles.



More concrete is used than any other man-made material in the world. As of 2006, about 7 cubic kilo metres of concrete are made each year—more than one cubic metre for every person on Earth. Concrete powers a $US 35-billion industry which employs more than two million workers in the United States alone.[citation needed] More than 55,000 miles (89,000 km) of highways in America are paved with this material. The People's Republic of China currently consumes 40% of the world's cement/concrete production.








History

In Serbia, remains of a hut dating from 5600 BC have been found, with a floor made of red lime, sand, and gravel. The pyramids of Shaanxi in China, built thousands of years ago, contain a mixture of lime and volcanic ash or clay. The Assyrians and Babylonians used clay as cement in their concrete. The Egyptians used lime and gypsum cement.

During the Roman Empire, Roman concrete was made from quicklime, pozzolanic ash/pozzolana, and an aggregate of pumice; it was very similar to modern Portland cement concrete. The widespread use of concrete in many Roman structures has ensured that many survive almost intact to the present day. The Baths of Caracalla in Rome are just one example of the longevity of concrete, which allowed the Romans to build this and similar structures across the Roman Empire. Many Roman aqueducts have masonry cladding to a concrete core, a technique they used in structures such as the Pantheon, Rome, the interior dome of which is unclad concrete.

The secret of concrete was lost for 13 centuries until 1756, when the British engineer John Smeaton pioneered the use of hydraulic lime in concrete, using pebbles and powdered brick as aggregate. Portland cement was first used in concrete in the early 1840s.

Recently, the use of recycled materials as concrete ingredients is gaining popularity because of increasingly stringent environmental legislation. The most conspicuous of these is fly ash, a by-product of coal-fired power plants. This has a significant impact by reducing the amount of quarrying and landfill space required, and, as it acts as a cement replacement, reduces the amount of cement required to produce a solid concrete. As cement production creates massive quantities of carbon dioxide, cement-replacement technology such as this will play an important role in future attempts to cut carbon dioxide emissions.

Concrete additives have been used since Roman and Egyptian times, when it was discovered that adding volcanic ash to the mix allowed it to set under water. Similarly, the Romans knew that adding horse hair made concrete less liable to crack while it hardened, and adding blood made it more frost-resistant.

In modern times, researchers have experimented with the addition of other materials to create concrete with improved properties, such as higher strength or electrical conductivity.


COMPOSITION:

There are many types of concrete available, created by varying the proportions of the main ingredients below.

The mix design depends on the type of structure being built, how the concrete will be mixed and delivered, and how it will be placed to form this structure.


Cement

Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar and plaster. English engineer Joseph Aspdin patented Portland cement in 1824; it was named because of its similarity in colour to Portland limestone, quarried from the English Isle of Portland and used extensively in London architecture. It consists of a mixture of oxides of calcium, silicon and aluminium. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay, and grinding this product (called clinker) with a source of sulfate (most commonly gypsum).


Water

Combining water with a cementitious material forms a cement paste by the process of hydration. The cement paste glues the aggregate together, fills voids within it, and allows it to flow more easily.

Less water in the cement paste will yield a stronger, more durable concrete; more water will give an easier-flowing concrete with a higher slump.

Impure water used to make concrete can cause problems, when setting, or in causing premature failure of the structure.

Hydration involves many different reactions, often occurring at the same time. As the reactions proceed, the products of the cement hydration process gradually bond together the individual sand and gravel particles, and other components of the concrete, to form a solid mass.


Aggregates

Fine and coarse aggregates make up the bulk of a concrete mixture. Sand, natural gravel and crushed stone are mainly used for this purpose. Recycled aggregates (from construction, demolition and excavation waste) are increasingly used as partial replacements of natural aggregates, while a number of manufactured aggregates, including air-cooled blast furnace slag and bottom ash are also permitted.

Decorative stones such as quartzite, small river stones or crushed glass are sometimes added to the surface of concrete for a decorative "exposed aggregate" finish, popular among landscape designers.


Reinforcement




Installing rebar in a floor slab during a concrete pour




Concrete is strong in compression, as the aggregate efficiently carries the compression load. However, it is weak in tension as the cement holding the aggregate in place can crack, allowing the structure to fail. Reinforced concrete solves these problems by adding metal reinforcing bars, glass fiber, or plastic fiber to carry tensile loads.


Chemical admixtures

Chemical admixtures are materials in the form of powder or fluids that are added to the concrete to give it certain characteristics not obtainable with plain concrete mixes. In normal use, admixture dosages are less than 5% by mass of cement, and are added to the concrete at the time of batching/mixing. The most common types of admixtures are:

• Accelerators speed up the hydration (hardening) of the concrete.

• Retarders slow the hydration of concrete, and are used in large or difficult pours where partial setting before the pour is complete is undesirable.

• Air-entrainers add and distribute tiny air bubbles in the concrete, which will reduce damage during freeze-thaw cycles thereby increasing the concrete's durability. However, entrained air is a trade-off with strength, as each 1% of air may result in 5% decrease in compressive strength.

• Plasticizers (water-reducing admixtures) increase the workability of plastic or "fresh" concrete, allowing it be placed more easily, with less consolidating effort. Superplasticizers (high-range water-reducing admixtures) are a class of plasticizers which have fewer deleterious effects when used to significantly increase workability. Alternatively, plasticizers can be used to reduce the water content of a concrete (and have been called water reducers due to this application) while maintaining workability. This improves its strength and durability characteristics.

• Pigments can be used to change the color of concrete, for aesthetics.

• Corrosion inhibitors are used to minimize the corrosion of steel and steel bars in concrete.

• Bonding agents are used to create a bond between old and new concrete.

• Pumping aids improve pumpability, thicken the paste, and reduce dewatering – the tendency for the water to separate out of the paste.


Mineral admixtures and blended cements

There are inorganic materials that also have pozzolanic or latent hydraulic properties. These very fine-grained materials are added to the concrete mix to improve the properties of concrete (mineral admixtures), or as a replacement for Portland cement (blended cements). 

• Fly ash: A by product of coal fired electric generating plants, it is used to partially replace Portland cement (by up to 60% by mass). The properties of fly ash depend on the type of coal burnt. In general, silicious fly ash is pozzolanic, while calcareous fly ash has latent hydraulic properties. 

• Ground granulated blast furnace slag (GGBFS or GGBS): A by product of steel production, is used to partially replace Portland cement (by up to 80% by mass). It has latent hydraulic properties. 

• Silica fume: A by-product of the production of silicon and ferrosilicon alloys. Silica fume is similar to fly ash, but has a particle size 100 times smaller. This results in a higher surface to volume ratio and a much faster pozzolanic reaction. Silica fume is used to increase strength and durability of concrete, but generally requires the use of superplasticizers for workability. 

• High Reactivity Metakaolin (HRM): Metakaolin produces concrete with strength and durability similar to concrete made with silica fume. While silica fume is usually dark gray or black in color, high reactivity metakaolin is usually bright white in color, making it the preferred choice for architectural concrete where appearance is important.


Concrete Production

The processes used vary dramatically, from hand tools to heavy industry, but result in the concrete being placed where it cures into a final form.

When initially mixed together, portland cement and water rapidly form a gel, formed of tangled chains of interlocking crystals. These continue to react over time, with the initially fluid gel often aiding in placement by improving workability. As the concrete sets, the chains of crystals join up, and form a rigid structure, gluing the aggregate particles in place. During curing, more of the cement reacts with the residual water (Hydration).

This curing process develops physical and chemical properties. Among other qualities, mechanical strength, low moisture permeability, and chemical and volumetric stability.


Mixing Concrete





Cement being mixed with sand and water to form concrete



Thorough mixing is essential for the production of uniform, high quality concrete. Therefore, equipment and methods should be capable of effectively mixing concrete materials containing the largest specified aggregate to produce uniform mixtures of the lowest slump practical for the work. Separate paste mixing has shown that the mixing of cement and water into a paste before combining these materials with aggregates can increase the compressive strength of the resulting concrete. The paste is generally mixed in a high-speed, shear-type mixer at a w/cm (water to cement ratio) of 0.30 to 0.45 by mass. The premixed paste is then blended with aggregates and any remaining batch water, and final mixing is completed in conventional concrete mixing equipment. 

High-Energy Mixed Concrete (HEM concrete) is produced by means of high-speed mixing of cement, water and sand with net specific energy consumption at least 5 kilojoules per kilogram of the mix. It is then added to a plasticizer admixture and mixed after that with aggregates in conventional concrete mixer. This paste can be used itself or foamed (expanded) for lightweight concrete. Sand effectively dissipates energy in this mixing process. HEM concrete fast hardens in ordinary and low temperature conditions, and possesses increased volume of gel, drastically reducing capillarity in solid and porous materials. It is recommended for precast concrete in order to reduce quantity of cement, as well as concrete roof and siding tiles, paving stones and lightweight concrete block production.


Workability






Pouring a concrete floor for a commercial building, (slab-on-grade)



Workability is the ability of a fresh (plastic) concrete mix to fill the form/mold properly with the desired work (vibration) and without reducing the concrete's quality. Workability depends on water content, aggregate (shape and size distribution), cementitious content and age (level of hydration), and can be modified by adding chemical admixtures. Raising the water content or adding chemical admixtures will increase concrete workability. Excessive water will lead to increased bleeding (surface water) and/or segregation of aggregates (when the cement and aggregates start to separate), with the resulting concrete having reduced quality. The use of an aggregate with an undesirable gradation can result in a very harsh mix design with a very low slump, which cannot be readily made more workable by addition of reasonable amounts of water.

Workability can be measured by the Concrete Slump Test, a simplistic measure of the plasticity of a fresh batch of concrete following the ASTM C 143 or EN 12350-2 test standards. Slump is normally measured by filling an "Abrams cone" with a sample from a fresh batch of concrete. The cone is placed with the wide end down onto a level, non-absorptive surface. It is then filled in three layers of equal volume, with each layer being tamped with a steel rod in order to consolidate the layer. When the cone is carefully lifted off, the enclosed material will slump a certain amount due to gravity. A relatively dry sample will slump very little, having a slump value of one or two inches (25 or 50 mm). A relatively wet concrete sample may slump as much as six or seven inches (150 to 175 mm).

Slump can be increased by adding chemical admixtures such as mid-range or high-range water reducing agents (super-plasticizers) without changing the water/cement ratio. It is bad practice to add excessive water upon delivery to the jobsite, however in a properly designed mixture it is important to reasonably achieve the specified slump prior to placement as design factors such as air content, internal water for hydration/strength gain, etc. are dependent on placement at design slump values.

High-flow concrete, like self-consolidating concrete, is tested by other flow-measuring methods. One of these methods includes placing the cone on the narrow end and observing how the mix flows through the cone while it is gradually lifted.


Curing




A concrete slab ponded while curing











Concrete columns curing while wrapped in plastic


In all but the least critical applications, care needs to be taken to properly cure concrete, and achieve best strength and hardness. This happens after the concrete has been placed. Cement requires a moist, controlled environment to gain strength and harden fully. The cement paste hardens over time, initially setting and becoming rigid though very weak, and gaining in strength in the days and weeks following. In around 3 weeks, over 90% of the final strength is typically reached.

Hydration and hardening of concrete during the first three days is critical. Abnormally fast drying and shrinkage due to factors such as evaporation from wind during placement may lead to increased tensile stresses at a time when it has not yet gained significant strength, resulting in greater shrinkage cracking. The early strength of the concrete can be increased by keeping it damp for a longer period during the curing process. Minimizing stress prior to curing minimizes cracking. High early-strength concrete is designed to hydrate faster, often by increased use of cement which increases shrinkage and cracking.

During this period concrete needs to be in conditions with a controlled temperature and humid atmosphere, in practice this is achieved by spraying or ponding the concrete surface with water, thereby protecting concrete mass from ill effects of ambient conditions. The pictures to the right show two of many ways to achieve this, ponding – submerging setting concrete in water, and wrapping in plastic to contain the water in the mix.

Properly curing concrete leads to increased strength and lower permeability, and avoids cracking where the surface dries out prematurely. Care must also be taken to avoid freezing, or overheating due to the exothermic setting of cement. Improper curing can cause scaling, reduced strength and abrasion resistance and cracking.